|
|
|
机器视觉和近红外光谱对红松籽品质检测方法的研究 |
|
论文目录 |
|
摘要 | 第4-6页 | Abstract | 第6-8页 | 1 绪论 | 第15-36页 | 1.1 论文研究的意义和目的 | 第15-19页 | 1.1.1 论文研究的产业背景分析 | 第15-17页 | 1.1.2 论文研究的意义和目的 | 第17-19页 | 1.2 机器视觉技术和近红外光谱分析技术 | 第19-26页 | 1.2.1 机器视觉技术 | 第19-21页 | 1.2.2 近红外光谱分析技术 | 第21-26页 | 1.3 坚果品质研究国内外研究概况 | 第26-30页 | 1.3.1 国内研究概况 | 第26-28页 | 1.3.2 国外研究概况 | 第28-30页 | 1.4 本论文主要研究内容 | 第30-31页 | 1.5 研究的技术路线 | 第31-35页 | 1.5.1 红松籽外部品质分级技术路线 | 第31-33页 | 1.5.2 红松籽内部品质检测技术路线 | 第33-35页 | 1.6 本章小结 | 第35-36页 | 2 基于机器视觉的红松籽外部品质分级研究 | 第36-62页 | 2.1 引言 | 第36页 | 2.2 图像分割的偏微分方程方法 | 第36-45页 | 2.2.1 水平集方法和变分方法 | 第37-43页 | 2.2.2 测地线活动轮廓模型 | 第43-44页 | 2.2.3 有限差分法 | 第44-45页 | 2.3 红松籽数字图像的采集 | 第45-46页 | 2.3.1 实验材料 | 第45页 | 2.3.2 实验设备 | 第45-46页 | 2.4 红松籽实际果长、最大脱蒲横径的获取 | 第46-48页 | 2.5 C-V模型与改进的多水平集C-V模型 | 第48-54页 | 2.5.1 C-V模型 | 第48-50页 | 2.5.2 改进的C-V模型 | 第50-51页 | 2.5.3 多水平集C-V模型及改进的多水平集C-V模型 | 第51-54页 | 2.6 红松籽特征参数的提取 | 第54-55页 | 2.7 算法描述 | 第55-57页 | 2.8 结果与分析 | 第57-61页 | 2.8.1 模型的建立 | 第57-58页 | 2.8.2 模型的验证 | 第58-60页 | 2.8.3 红松籽外部品质综合评定分级标准 | 第60-61页 | 2.9 本章小结 | 第61-62页 | 3 红松籽近红外光谱分析 | 第62-86页 | 3.1 引言 | 第62页 | 3.2 近红外光谱分析的基本理论 | 第62-69页 | 3.2.1 近红外光谱分析原理 | 第62-63页 | 3.2.2 漫反射光谱分析方法 | 第63-64页 | 3.2.3 近红外光谱的化学信息 | 第64-66页 | 3.2.4 近红外光谱定量分析的建模方法 | 第66-68页 | 3.2.5 近红外数学模型的评价 | 第68-69页 | 3.3 红松籽近红外光谱实验数据的采集 | 第69-74页 | 3.3.1 实验材料与校正集的界定 | 第69-70页 | 3.3.2 近红外光谱仪设备 | 第70-72页 | 3.3.3 红松籽近红外光谱数据的获取方法 | 第72页 | 3.3.4 红松籽近红外光谱数据的分析 | 第72-74页 | 3.4 基于NIR分析的红松籽内部成分定量检测模型的建立 | 第74-75页 | 3.5 光谱的预处理 | 第75-82页 | 3.5.1 导数 | 第76-78页 | 3.5.2 多元散射校正 | 第78-80页 | 3.5.3 矢量归一化 | 第80-81页 | 3.5.4 变量标准化校正 | 第81-82页 | 3.6 特征波段的选取 | 第82-84页 | 3.6.1 间隔偏最小二乘法 | 第83页 | 3.6.2 反向间隔偏最小二乘法 | 第83-84页 | 3.6.3 无信息变量消除法 | 第84页 | 3.7 本章小结 | 第84-86页 | 4 红松籽脂肪近红外光谱的无损检测研究 | 第86-102页 | 4.1 引言 | 第86-87页 | 4.2 红松籽脂肪理化分析值的获取 | 第87-88页 | 4.3 红松籽脂肪NIR模型校正集样品的选取 | 第88-89页 | 4.4 红松籽脂肪NIR模型光谱预处理方法的选择 | 第89-92页 | 4.5 适合红松籽脂肪NIR建模波段范围的选取 | 第92-99页 | 4.6 红松籽脂肪NIR数学模型的验证 | 第99-101页 | 4.7 本章小结 | 第101-102页 | 5 红松籽蛋白质近红外光谱的无损检测研究 | 第102-114页 | 5.1 引言 | 第102-103页 | 5.2 红松籽蛋白质理化分析值的获取 | 第103-104页 | 5.3 红松籽蛋白质NIR模型校正集样品的选取 | 第104-105页 | 5.4 红松籽蛋白质NIR模型光谱预处理方法的选择 | 第105-106页 | 5.5 适合红松籽蛋白质NIR建模波段范围的选取 | 第106-111页 | 5.6 红松籽蛋白质NIR数学模型的验证 | 第111-113页 | 5.7 本章小结 | 第113-114页 | 6 红松籽水分近红外光谱的无损检测研究 | 第114-125页 | 6.1 引言 | 第114页 | 6.2 红松籽水分理化分析值的获取 | 第114-115页 | 6.3 红松籽水分NIR模型校正集样品的选取 | 第115-116页 | 6.4 红松籽水分NIR模型光谱预处理方法的选择 | 第116-117页 | 6.5 适合红松籽水分NIR建模波段范围的选取 | 第117-122页 | 6.6 红松籽水分NIR数学模型的验证 | 第122-124页 | 6.7 本章小结 | 第124-125页 | 结论与展望 | 第125-129页 | 结论 | 第125-127页 | 展望 | 第127-129页 | 参考文献 | 第129-139页 | 攻读学位期间发表的学术论文 | 第139-140页 | 致谢 | 第140-142页 | 附件 | 第142-143页 |
|
|
|
|
论文编号BS4011264,这篇论文共143页 会员购买按0.35元/页下载,共需支付50.05元。 直接购买按0.5元/页下载,共需要支付71.5元 。 |
 |
 |
我还不是会员,注册会员!
会员下载更优惠!充值送钱! |
我只需要这篇,无需注册!
直接网上支付,方便快捷! |
|
|
|
版权申明:本目录由www.jylw.com网站制作,本站并未收录原文,如果您是作者,需要删除本篇论文目录请通过QQ或其它联系方式告知我们,我们承诺24小时内删除。 |
|
|