|
|
|
一种基于PSO的BP神经网络训练方法(1)
|
|
【免费计算机论文网】
摘 要 基于粒子群优化的算法具有全局随机搜索最优解的特点。本文尝试把PSO算法和神经网络权值训练的常用算法BP算法结合起来进行数据的训练,实现对一组数据的训练,并对结果与BP算法的训练结果进行了对比,得到了较好的效果。 关键词 神经网络;反向传播算法;PSO算法;适应度函数 人工神经网络是由人工神经元互连而成的网络,它从微观结构和功能上实现对人脑的抽象和简化,具有许多优点。对神经网络的权值系数的确定,传统上采用反向传播算法(BP算法)。BP网络是一种多层前向反馈神经网络,BP算法是由两部分组成:信息的正向传递与误差的反向传播。在反向传播算法中,对权值的训练采用的是爬山法(即:δ算法)。这种方法在诸多领域取得了巨大的成功,但是它有可能陷入局部最小值,不能保证收敛到全局极小点。另外,反向传播算法训练次数多,收敛速度慢,使学习结果不能令人满意。 粒子群优化算法(Particle Swarm Optimizer,PSO)是一种进化计算技术(evolutionary computation)。源于对鸟群捕食的行为研究,PSO中,每个优化问题的解都是搜索空间中的一只鸟,我们称之为粒子。所有的粒子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。然后粒子们就追随当前的最优粒子在解空间中搜索。如果用粒子群算法对神经网络的权值进行训练,会得到较快的收敛速度,而且可以避免局部最值得出现。研究表明PSO 是一种很有潜力的神经网络算法。 本文提出了一种基于PSO算法的BP网络学习算法,并通过MATLAB7.0实现对一组简单的向量进行训练对PSO—BP算法和BP算法进行了对比,试验结果说明PSO—BP算法适合训练BP网络,并且也有希望应用于其他种类的前向网络的训练。
1 PSO算法 PSO中,每个优化问题的解都是搜索空间中的一只鸟。我们称之为“粒子”。所有的例子都有一个由被优化的函数决定的适应
|
|
|
|
<<<<<全文未完>>>>> 全文字数约2058字
|
要阅读全文请先注册成VIP会员!详情请阅读会员专区!
VIP会员可以阅读全文, 欢迎加入VIP会员专区! 加入VIP会员步骤如下:
注册用户名→在线购卡
|
|
|
|